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Abstract: Agriculture, a fundamental element of human civilization, is crucial for ensuring 

food security and economic stability. The sector currently faces significant challenges due 

to rising global populations, climate change, and dwindling natural resources. To address 

these issues, sustainable agricultural practices are needed that increase efficiency while 

reducing environmental impact. Recent advancements in artificial intelligence (AI) present 

transformative opportunities to enhance agricultural sustainability. This paper investigates 

how AI is being integrated into farming to optimize productivity, resource management, 

and environmental stewardship. The study synthesizes over 300 academic articles, 

focusing on 180 key publications that detail AI applications in field management, nutrient 

utilization, water efficiency, and weed control. AI, through machine learning and 

predictive analytics, enables data-driven decisions that improve crop performance and 

minimize waste. In field management, AI helps monitor crop health and predict yields; 

advanced sensors and IoT devices enable precise nutrient application, reducing fertilizer 

use and environmental damage. For water management, AI optimizes irrigation and detects 

leaks, ensuring efficient water use. In weed control, AI-based image recognition allows 

precise identification and treatment, minimizing herbicide use. The integration of AI into 

agriculture not only boosts economic outcomes but also aligns with sustainability goals. 

By examining case studies globally, the research demonstrates AI-driven practices' 

effectiveness in enhancing resource efficiency and sustainability. The findings highlight 

the necessity for continued AI investment and stakeholder collaboration to overcome 

implementation barriers like cost and technical expertise. Ultimately, the study advocates 

for a strategic approach to leveraging AI to build resilient and sustainable agricultural 

systems capable of nourishing future generations. 
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1. Introduction 

The Food and Agriculture Organization of the United Nations (2021) predicts that 

the global population will approach 10 billion by 2050, thereby necessitating a substantial 

increase in food production. Achieving this objective requires strategic planning a nd 

effective management practices. Despite  the advancements brought by the                      

Green Revolution that improved crop yields in many regions, ongoing challenges persist, 

notably in maintaining produce quality and nutrition amidst climate chan ge (Ahmad et 

al., 2019). The agricultural sector is burdened by multiple obstacles, including labor 

shortages, seasonal labor fluctuations, reduced agricultural land, and the demand for 

sustainable wages (Habib-ur-Rahman et al., 2022). These labor shortages are exacerbated 

b y  ru ra l - to -u rb a n  m ig ra t io n ,  wh ic h  im p a c t s  a g r ic u l tu ra l  p ro d u c t iv i ty .                           
Additionally, climate change introduces irregular weather patterns such as prolonged 

droughts, altered rainfall, increased temperatures, and floods, all of which disrupt farming 

operations (Benedetti et al., 2019). Expanding cropping areas to meet demand often 

increases resource use, contributing to climate change and leading to natural resource 

depletion, including deforestation and soil erosion (Abbas et al., 2021). 

Inconsistent rainfall and reduced water availability have led to declining crop yields 

(Aryal et al., 2019), while rising temperatures and humidity adversely affect crop growth 

(Asseng et al., 2019). Moreover, soil quality degradation, driven by chemical u se and 

mono-cropping, exacerbates these challenges. This degradation creates a cycle where 

increased fertilizer use worsens soil fertility, requiring additional chemical inputs     

(Mosier et al., 2021). Therefore, addressing these environmental and resource-related 

issues is critical. 

Artificial Intelligence (AI) has emerged as a vital tool in overcoming agricultural 

challenges (Aleminew & Alemayehu, 2020). AI technologies, including machine learning 

and deep learning algorithms, enhance yield and production management by mimicking 

human cognitive functions (Xu et al., 2021; Baweja, 2018). Notably, Artificial Neural 

Networks (ANNs) and Convolutional Neural Networks (CNNs) are prominently used in 

agricultural data analytics (Debnath, 2022). Digital urban farming, automation, and 

indoor farming are innovative strategies leveraging AI to boost crop yield, minimize food 

loss, and improve resilience to climate change (Balogun et al., 2022; Lowenberg-DeBoer, 

2020). 

Deep Convolutional Neural Networks (DCNNs) are particularly effective in plant 

health assessment and nutrient value analysis, as well as diagnosing plant diseases and 

detecting water content (Dyrmann et al., 2016; Taha, 2022). AI also facilitates disaster 

risk assessment and drought stress identification, providing timely warnings to prevent 

crop loss (Gupta et al., 2023). For instance, CNN models like ResNet50 have shown high 

accuracy in detecting drought stress in maize, outperforming traditional methods            

(An et al., 2019). Although AI models encounter challenges in detecting and 

differentiating weeds due to variable stages and patterns (Su, 2020), innovations such as 

smart sprayers with machine vision enhance detection and precision spraying 

(Vijayakumar, 2023; Olsen et al., 2019). 

Successfully applying AI in agriculture requires addressing factors such as chemical 

use and labor skills (Dhanaraju et al., 2022). It is crucial to evaluate AI's feasibility and 

efficacy in real-world scenarios beyond controlled environments (González-Calatayud, 

2021). This study systematically reviews AI technologies in agriculture, focusing on 

nutrient, water, and weed management with the following objectives: (1) to assess AI's 

potential for improving input use efficiency in agriculture and (2) to investigate AI 

applications in nutrient, water, and weed management to enhance crop yield .                           
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The structure of this paper includes: research methodology in Section 1, AI for 

maximizing agricultural input efficiency in Section 2, a revolution in agriculture in 

Section 3, AI technologies in agriculture in Section 4, results and discussion in Section 5, 

limitations in Section 6, prospects in Section 7, and conclusions in Section 8. 

2. Methodology  

2.1 Review Principles 

This research follows two primary approaches to explore the role of Artificial 

Intelligence (AI) in agriculture. The first approach provides a general overview of AI 

concepts and their potential applications within the farming sector, emphasizing 

sustainability and operational efficiency through practical case studies and real -world 

scenarios. The second approach uses a document review research methodology, focusing 

on an in-depth analysis of existing literature on automation technologies in agriculture, 

specifically targeting AI applications in nutrient management, irrigation, and weed 

disposal (Abubakar & Aina, 2019). 

The study is designed to evaluate both the advantages and limitations of AI in farm 

management, utilizing a three-stage research methodology. In the first stage, the current 

agricultural challenges are identified, particularly those that AI could address, such as 

increasing crop yield, reducing resource consumption, and minimizing labor 

requirements. In the second stage, relevant studies and publications are examined to 

understand the role of AI technologies in agriculture. The third stage involves discussing 

the findings, including the methodologies used, to provide insights into AI's impact on 

agricultural practices and its potential future applications. 

2.2 Literature Search Strategy 

The literature search employed a comprehensive review of both historical and 

current studies on AI's role in agriculture. Reputable online databases, including Scopus, 

Google Scholar, Science Direct, Web of Science, and PubMed, were used as sources. 

Additionally, data from the United Nations Food and Agriculture Organization (UNFAO) 

was included to provide a broader perspective on AI's global impact on agriculture.      

The search focused on identifying studies exploring machine learning (ML) concepts,    

AI in nutrient management, AI-based irrigation systems, and AI applications in weed 

identification and control. 

The search strategy employed a set of targeted keywords to ensure the scope of the 

review covered AI's most relevant applications in agriculture. Keywords included 

"machine learning concepts," "artificial intelligence in agriculture," "AI for nutrient stress 

detection," "AI challenges in farming," "AI-based irrigation management," "AI in weed 

identification," "deep learning in agriculture," and "AI for weed control." These keywords 

allowed for an exhaustive exploration of the practical implications of AI in agricultural 

operations, including automation and efficiency improvements. 

The study employed strict criteria for selecting relevant research papers.          

Articles published in the last 10 years were prioritized, but earlier foundational research 

was included when necessary to provide historical context. The inclusion of empirical 

studies focusing on real-world applications of AI in agriculture ensured that the review 

was grounded in practical outcomes. Studies had to be peer-reviewed and offer direct 

insights into how AI technologies are implemented in farming operations, such as the use 

of AI for resource management or crop health monitoring. 
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2.3 Inclusion and Exclusion Criteria 

The inclusion criteria for this review emphasized studies that explored AI’s role in 

optimizing resource management within agriculture. Studies focusing on AI applications 

that provide real-time data for managing fertilizers, water, and weed control were 

prioritized. These studies demonstrated direct benefits to farming operations in terms of 

increased efficiency, resource optimization, and precision farming techniques. 

Additionally, only articles that presented empirical data on AI applications in actual 

agricultural settings were included. Examples of AI applications included sensor 

networks, drones, satellite imaging, and automated systems to enhance crop management 

and pest control. These studies offered evidence of how AI technologies improve 

operational outcomes in real-world farming environments. 

The exclusion criteria eliminated studies focused solely on theoretical or speculative 

discussions of AI. The review specifically avoided articles that lacked empirical evidence 

or case studies demonstrating AI's practical benefits in agriculture. Furthermore, studies 

not published in English or those without full-text access were excluded from the review 

to maintain the quality and reliability of the research. 

2.4 Limitations 

This study acknowledges several limitations in the methodology used. First, while 

over 170 papers were reviewed, the research is limited to studies published between 1999 

and 2024. Although this provides a broad range of data, AI technologies are rapidly 

evolving, and more recent developments may not be fully represented. Thus, future 

advancements in AI that could significantly impact agriculture may not have been 

captured in this review. 

Another limitation involves the diversity of agricultural practices across different 

regions. Much of the reviewed literature focuses on developed countries with access to 

advanced agricultural technologies, including AI. This may limit the generalizability       

of the findings to regions with less advanced infrastructure or fewer technological 

resources. Future research should examine AI applications in a wider range of geographic 

and economic contexts to understand their broader applicability. 

Moreover, the literature search relied heavily on online databases, which could 

introduce some bias in the selection process. While the study aimed to include a diverse 

range of research, the availability of published work is not uniform across all regions .    

As a result, the review may not fully represent the global impact of AI in agriculture, 

particularly in underrepresented regions where fewer studies have been published.          

The reliance on empirical studies focusing on short-term outcomes, such as crop yield 

improvements and water-use efficiency, also presents a limitation. Many of the reviewed 

studies do not address the long-term sustainability of AI technologies in agriculture. 

There is a need for future research to evaluate AI’s long-term impacts, including its 

effects on soil health, biodiversity, and environmental sustainability. 

 

3. Revolution in Agriculture: Towards Smart Farming 

Agriculture has undergone significant transformations throughout human history, 

evolving from simple manual practices to advanced technological applications.                   

This evolution can be categorized into distinct eras: 

1. Agriculture 1.0: The initial phase of agriculture, marked by manual labor and 

rudimentary tools such as plows and shovels. This era was characterized by minimal yields 

and subsistence farming (Padhy et al., 2023; Charles et al., 2020). 
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2. Agriculture 2.0: Emerging during the industrial age of the 19th century, this era 

introduced the use of chemicals, advanced tools, and machinery. Although it significantly 

increased agricultural productivity, it also led to environmental issues such as pollution, 

deforestation, and ecological damage (Hemathilake & Gunathilake, 2022). 

3.Agriculture 3.0: This phase focused on the integration of technological 

advancements including precision farming, robotic operations, and software solutions to 

enhance efficiency and yield while reducing labor and resource consumption. It aimed to 

address longstanding challenges such as weed management, plant nutrition, and irrigation 

(Yang et al., 2021; Ghorbani et al., 2019). 

4. Agriculture 4.0: The current era of agriculture leverages cutting-edge 

technologies such as Data Analytics, Artificial Intelligence (AI), Cloud Computing, 

sensors, and the Internet of Things (IoT). These innovations build upon the advancements 

of Agriculture 3.0 by further streamlining and optimizing farming practices, thus 

enhancing overall productivity and sustainability (Nungula, 2024; Alam, 2023).  

This progression highlights the ongoing technological evolution in agriculture, with 

each era introducing new tools and methodologies to address the sector's challenges and 

improve its efficiency. 

According to Abbas et al. (2023), case studies on sunflower farms in Pakistan reveal 

significant economic and environmental inefficiencies. Using epsilon-based measures and 

Tobit truncated regression models, the studies show that over 50% of the 240 sampled 

producers were environmentally inefficient, and 70% were economically unproductive 

(Javaid et al., 2022). In contrast, smart farming practices have emerged as a solution to 

these inefficiencies. By integrating technologies such as the Internet of Things (IoT), 

drones, GPS-based precision farming models, and data analytics, smart farming has 

revolutionized traditional agricultural practices (Akhter, 2022). These technologies 

address limitations in farming operations that were previously resource-intensive and time-

consuming, such as soil quality, moisture management, and climate control                     

(Durai & Shamili, 2022). With these advancements, farmers can achieve higher crop yields 

and more efficient management of resources like fertilizers and chemicals (Sisinni, 2018). 

The progression from traditional practices to data-driven smart farming underscores the 

industry's evolution towards enhanced productivity and sustainability, reflecting the 

foundational role of agriculture in human civilization and its adaptation to modern 

technological solutions. 

 
Figure 1. Development during the agricultural revolution 
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4. Artificial Intelligence in Agriculture 

Artificial Intelligence (AI) is an advanced technology developed to mimic human 

cognitive processes such as learning, problem-solving, and decision-making               
(Siemens, 2018; Fan, 2020). AI achieves these capabilities through the training of software 

algorithms using extensive datasets, enabling it to predict and solve complex agricultural 

challenges by identifying input-output relationships (Khanna & Kaur, 2019).                          

AI applications like machine learning (ML), deep learning (DL), and data analytics have 

had a transformative impact across various industries, including agriculture. In particular, 

AI has revolutionized traditional farming practices through the integration of cutting-edge 

technologies such as ML algorithms, robotics, wireless sensor networks (WSN), and the 

Internet of Things (IoT). These innovations have significantly improved the collection, 

storage, and analysis of agricultural data, ultimately enhancing farm productivity and 

operational efficiency (Ferentinos, 2018). This article explores AI's applications in 

agriculture, the associated challenges, and potential solutions. 

4.1 Machine Learning 

Machine learning, the process through which systems learn from data without explicit 

programming, has proven to be highly valuable in agriculture. ML algorithms are widely 

used for data-intensive tasks, such as precision agriculture, where data from sensors, 

drones, and satellites are analyzed to optimize farming operations. For example, ML 

techniques can process data on soil properties, climatic conditions, and crop health, helping 

to improve irrigation strategies, fertilizer use, and pest management (Kamilaris & 

Prenafeta-Boldú, 2018). 

Another crucial application of ML in agriculture is crop disease detection. 

Traditional methods of disease identification rely on visual inspection, which can be 

laborious and prone to human error. ML-powered systems, particularly those using image 

classification techniques, offer more efficient solutions. A study by Sladojevic et al. (2016) 

demonstrated the use of convolutional neural networks (CNNs) to identify plant diseases 

based on leaf images, achieving high accuracy rates. Such systems can help farmers detect 

and manage diseases earlier, reducing crop loss. 

4.2 Deep Learning 

Deep learning, a subset of ML, involves neural networks with multiple processing 

layers capable of learning complex patterns. DL has gained traction in agriculture for tasks 

such as image recognition, object detection, and predictive modeling. One promising 

application of DL is automated pest and weed detection. Conventional methods of pest and 

weed control are often labor-intensive and depend on chemical interventions. In contrast, 

DL-based systems can analyze images of fields to differentiate between crops and weeds, 

allowing for more precise and eco-friendly interventions (Liakos et al., 2018). 

Moreover, DL has been utilized to improve crop yield prediction. Accurate yield 

forecasts are essential for food security and resource allocation. A study by Jiang et al. 

(2019) illustrated how DL models could integrate various data sources, including 

environmental factors, soil conditions, and crop characteristics, to predict yield more 

accurately than traditional statistical models. Such advancements enable better decision-

making for farmers and agricultural policymakers, fostering more efficient resource use. 
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4.3 Neural Networks Involved in AI 

4.3.1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a type of deep learning model 

specifically designed for processing grid-structured data, such as images (Asad & Bais, 

2020). CNNs stand out in image processing and classification tasks compared to other AI 

models due to their structure, which typically consists of three layers: convolution, pooling, 

and fully connected layers (Bajwa et al., 2015). 

1. Convolution Layer: The core feature of CNNs, this layer applies 

mathematical operations (kernels) to a 2D pixel grid, enabling the AI to 

efficiently analyze and extract features from images. This makes CNNs 

particularly useful in agricultural applications such as detecting plant 

diseases or identifying weeds in fields (Ashoka et al., 2022). 

2. Pooling Layer: This layer performs data extraction by reducing the 

dimensionality of feature maps, simplifying the representation of the image 

while retaining key information. 

3. Fully Connected Layer: This final layer combines the extracted features and 

classifies the image based on the learned patterns. 

CNNs also handle preprocessing tasks such as resizing, colorizing, and normalizing 

images for efficient processing (Mugo et al., 2021). The model segments images to 

distinguish relevant objects (e.g., crops) from their backgrounds, using advanced 

techniques to extract image features like spectral properties and visual textures         
(Lezoche, 2020) (Fig.2). In more complex scenarios, CNNs require additional algorithms 

like Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) to 

improve accuracy and adaptability in different geographical landscapes (Li et al., 2023). 

 
Figure 2. Identification of nutrient, water, and weed stress using CNN 

Deep Convolutional Neural Networks (DCNNs) like SegNet have demonstrated 

superior performance in identifying and segmenting color images compared to other 

models (Badrinarayanan et al., 2017). Enhancements in DCNN architecture include               
the integration of ResNets, which optimize error propagation in non-linear learning 
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models, and Inceptionv3, which reduces the number of calculation parameters, improving 

the efficiency and performance of AI models. 

In agricultural applications, DCNNs are used for various tasks, including nutrient 

detection in plants. For instance, Tran et al. (2019) employed Inception-ResNetv2 and 

autoencoders to classify nutrients in tomatoes. Other studies have shown that DCNNs can 

identify oilseeds and plants based on their nutrition status (Abdalla et al., 2021). 

A notable application of CNNs in agriculture is the use of the VGG-16 model to 

categorize rice paddy images at different growth stages, under various stress levels.          
With over 30,000 images from five rice species, this CNN achieved over 90% accuracy in 

detecting stressed crops (Anami et al., 2020). This demonstrates the potential of deep 

learning (DL) models in resource management within farming operations. These models 

can also be adapted for use on mobile devices, enhancing the convenience for field staff. 

However, CNNs have hardware limitations when processing large datasets. This challenge 

can be mitigated by using pre-trained models, which allow for quicker deployment in real-

world agricultural scenarios (Noon et al., 2020). 

4.3.2 Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) are designed to mimic the human brain's 

neural network, with the ability to self-organize, adapt to new data, and deliver complex 

results (Shah et al., 2020). ANNs, structured similarly to the human brain's neural 

pathways, contain three layers: 1) the input layer, 2) the hidden layer, and 3) the output 

layer. This structure allows ANNs to process non-linear information and perform parallel 

reasoning, adjusting predictions and outputs based on changes in input data (Abdipour         

et al., 2019). One significant advantage of ANNs is their adaptability in forecasting and 

predicting outcomes in dynamic environments. For example, in agriculture, ANNs can 

forecast crop yields using a system with three key components: 1) the Crop Disease 

Diagnosis Module (CDDM), 2) the Crop Yield Prediction Module (CYPM), and 3) the 

Image Pre-processing Module (IPM) (Jeong, 2018). These modules work in tandem to 

process images of crops, detect disease, and predict yields based on various factors such 

as climate and crop conditions. The Image Pre-processing Module (IPM) normalizes image 

data for efficient processing, while the Crop Disease Diagnosis Module (CDDM) analyzes 

images to identify crop diseases (Alves et al., 2017). Finally, the Crop Yield Prediction 

Module (CYPM) forecasts yield by considering multiple risks like climate, disease, and 

crop health, using data from sources such as web APIs (Barbedo, 2019). This case study 

illustrates how ANNs can enhance decision-making in agricultural practices by improving 

crop management and yield forecasting. 

5. Results and Discussion 

The agricultural sector faces mounting pressures due to rising food demand and 

various challenges. Traditional farming practices are increasingly inadequate, 

necessitating innovation and optimization to meet consumer needs effectively.         
Producers are grappling with issues such as climate change, mono-cropping, and excessive 

chemical use, which exacerbate the challenges faced (Cowls et al., 2023). To address these 

challenges and increase productivity, the industry must enhance efficiency and adopt 

advanced practices. One effective approach to boost crop productivity is the use of 

chemical fertilizers. Chemical fertilizers have been instrumental in improving plant 

nutrients and yields, particularly in wheat production. Over the past 45 years, they have 

demonstrated a significant correlation with increased productivity (Hassan et al., 2020). 
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This underscores the importance of adopting and optimizing such solutions to meet the 

forecasted agricultural demands (Fig. 3)           
 

 

Figure 3. Trends in Fertilizer Consumption for Cereal Production 

Data sources: World Bank Group (2024) 

The use of chemical fertilizers, while effective in enhancing crop productivity, poses 

significant long-term environmental risks. Increased application of chemicals can lead to 

adverse effects such as water eutrophication, air pollution, heavy metal accumulation, and 

greenhouse gas emissions. For instance, a study on cotton fields found that diesel 

machinery contributed the most to greenhouse gas emissions, followed by irrigation and 

chemical fertilizers, with over 1.1 tons of CO2 equivalent per hectare (Abbas, 2022).               
In the absence of chemical fertilizers, crops are more susceptible to nutrient deficiencies, 

creating a dependency on chemical inputs. This issue, along with plant diseases caused by 

fungi, insects, bacteria, and viruses, poses severe threats to crop health and productivity. 

Early detection of these problems, which can manifest as symptoms like colored spots, 

blight, rots, and wilts, is crucial for preventing widespread damage (Kaur et al., 2019). 

However, specialist expertise required for such detections is often inaccessible to many 

producers. Artificial Intelligence (AI) and automated tools offer a cost-effective alternative 

for managing these issues. AI can assist in precise nutrient management and early disease 

detection, alleviating the reliance on human experts. Additionally, AI can optimize water 

management and irrigation practices, crucial for sustainable agriculture, especially given 

that nearly 85% of global water resources are used in farming (Chauhan et al., 2022).     
With increasing population and urban development, efficient water use is critical.         

Figure 4 illustrates the anticipated impact of population growth on water availability per 

capita in India over the next 25 years. 
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Figure 4. Population and per capita water supply per year in India 

Data sources: KPMG International 2010; Office of the Registrar General & Census Commissioner, India 

The data indicate a significant decline in water availability per capita in India, from 

approximately 1.4 million gallons in 1951 to about 0.4 million gallons by 2011 

(Chakraborti et al., 2019). This reduction highlights a severe water scarcity issue 

exacerbated by increasing demands, projecting frequent droughts and water shortages 

across domestic, agricultural, and industrial sectors if not addressed. 

Weed management is a critical and persistent challenge in agriculture.                            
Weeds compete with crops for essential resources such as water, nutrients, and sunlight, 

leading to significant yield losses if not properly controlled. As illustrated in Figure 5, 

weeds can cause substantial reductions in crop yield across various types of crops                      

(Gharde et al., 2018). Traditional weed control methods, including manual removal and 

the use of herbicides, are labor-intensive, time-consuming, and expensive. Additionally,                             
the excessive use of herbicides poses several environmental risks, such as soil degradation, 

water contamination, air pollution, and the accumulation of harmful chemical residues on 

crops (Partel et al., 2021). While AI and automated systems offer promising solutions to 

the challenges of weed management, there are still obstacles to their widespread adoption. 

The initial investment costs for automated equipment and the necessary infrastructure can 

be prohibitive for small-scale farmers. Additionally, there is a need for skilled personnel 

to operate and maintain these systems. Despite these challenges, the long-term benefits, 

including cost savings, increased productivity, and environmental sustainability, make 

automated weed management a viable and attractive option for the future of agriculture 

(Elstone, 2020). 
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Figure 5. Actual yield losses (%) due to weeds in different crops (Gharde et al., 2018) 

The integration of AI and automated technologies in weed management represents     
a significant advancement in modern agriculture. These systems not only enhance                 
the efficiency and effectiveness of weed control but also contribute to more sustainable 

farming practices. As technology continues to evolve, it is likely that automated weed 

management will become an increasingly important tool for farmers worldwide, helping 

to address the critical challenge of weed control while minimizing environmental impact. 

 
Table 1. Applications of various ML and DL techniques in agriculture 

Author Applications Model Performance 

Albuquerque et al. 

(2020) 

Irrigation management Mask RCNN Models can perform well in 

different datasets 

Azimi et al.  

(2020) 

Sorghum stress detection 

from nitrogen-deficient 

state 

CNN Outperform other AI models 

Alibabaei et al. 

(2021) 

Irrigation management 

for tomato 

DQN, CNN Helps save water by 20–30% and 

tomato yield increase by 11%. 

Chen et al.             

(2021) 

Nitrogen level detection 

in rice 

SVM (Support Vector 

Machine) 

88% detection accuracy 

Subeesh et al. 

(2022) 

Automated weed 

recognition 

AlexNet, GoogLeNet, 

Inception V3, Xception 

InceptionV3 shows outstanding 

performance compared to other 

models 

Zhu et al.                 

(2022) 

Stress detection for rice DS-CNN, ND-CNN Comparative studies indicate that 

ND-CNN performed better than 

DS-CNN 

Zimit et al. (2023) predictive based control 
of precipitation in a 

water-scarce region 

ANFIS, FFNN, and MLR All three models perform well. 

Able to manage water resources 
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5.1 Drone Technology for Crop Management 

Unmanned Aerial Vehicles (UAVs), or drones, have matured from their military and 

videographic origins into essential agricultural tools. Equipped with AI software and 

advanced sensors, drones revolutionize precision farming through enhanced field 

inspection, precise irrigation, and improved fertilization management. This paper explores 

the capabilities, applications, and benefits of drone technology in precision agriculture. 

1. Sensor Capabilities 

1.1 Hyperspectral Sensors: Hyperspectral sensors capture images within 

narrow wavelength ranges (10-20 nm), across approximately a hundred light bands, 

providing detailed insights into plant health and nutrient composition                        

(Castaldi et al., 2016). 

1.2 Multispectral Sensors: Multispectral sensors, capturing fewer light 

bands (five to ten), are instrumental for broader applications, including crop 

monitoring and general field assessments. 

2. Applications in Precision Farming 

2.1 Nutrient Detection: The integration of AI algorithms with 

hyperspectral and multispectral sensors facilitates the detection of essential 

nutrients such as phosphorus, potassium, nitrogen, and sulfur. This capability 

supports targeted nutrient management, enhancing crop health and yield (Sagan et 

al., 2019). 

2.2 Field Inspection: Drones provide high-resolution spatial images, 

offering an efficient alternative to manual labor for field inspections. This aerial 

perspective is more cost-effective and time-efficient (Zhang, 2019). 

2.3 Health Monitoring: By utilizing various sensors, drones monitor plant 

health, detect water stress, and identify weed infestations, allowing for timely 

interventions that enhance crop management (Andriolo et al., 2020). 

3. Benefits 

3.1 Enhanced Efficiency: The deployment of drones drastically reduces 

the time and cost associated with traditional field inspections, augmenting 

operational efficiency (Chougule & Mashalkar, 2022). 

3.2 Improved Decision-Making: Data collected by drones enable precise 

irrigation, targeted application of plant treatments, and effective weed control.     
This results in improved crop yields and minimized losses (Bian et al., 2019). 

3.3 Environmental Impact Monitoring: Drones equipped with AI can 

identify soil degradation and predict environmental risks such as floods or 

droughts, providing early warnings for preventive action (Adede et al., 2019; 

Ennouri et al., 2021). 

4. Additional Applications 

4.1 Pest Detection: Real-time sensor data from drones facilitate the prompt 

identification of pest issues, enabling rapid response to mitigate damage (Orchi et 

al., 2022). 
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4.2 Soil Fertility Management: Drones assist in managing soil fertility by 

analyzing soil conditions and guiding the precise application of fertilizers and 

chemicals (Helfer et al., 2020; Spanaki, 2021). 

The integration of drones with AI technology and advanced sensors significantly 

enhances precision agriculture by improving monitoring capabilities, increasing 

efficiency, and supporting informed decision-making. This technological advancement 

promotes optimized crop management and contributes to sustainable environmental 

practices. 

5.2 Nutrient Stress Management Using AI Technology 

Artificial Intelligence (AI) technology has emerged as a powerful tool in managing 

nutrient stress in plants. Through advanced methodologies and various case studies,                
AI is helping to enhance nutrient detection and analysis, improving accuracy, efficiency, 

and disease detection in crops. 

1. AI for Nutrient Detection 

1.1 Photosynthetic AI: AI systems are employed to detect both 

macronutrient and micronutrient levels in crops such as hydroponic tomatoes and 

maize. One approach involves using chlorophyll fluorescence data to identify 

specific nutrient deficiencies. For example, a notable decrease in sulfur levels can 

be detected using this method (Kalaji, 2014). 

1.2 Fluorescence Parameters: AI leverages fluorescence parameters as 

reliable indicators of plant nutritional status, effectively detecting deficiencies in 

essential nutrients and supporting improved nutrient management (Condori et al., 

2017). 

2. Methods for Nutrient Analysis 

2.1 Photosynthetic Activities: AI evaluates nutrient levels by analyzing 

fluorescence transients in plant leaves, which helps in identifying deficiencies in 

critical nutrients like phosphorus (P), calcium (Ca), nitrogen (N), iron (Fe), and 

potassium (K) (Aleksandrov, 2022). 

2.2 Chlorophyll Fluorescence: The Join Imaging Platform (JIP) test 

utilizes chlorophyll fluorescence to assess the overall physiological status of plants, 

providing insights into the health of photosystem I and II and enabling the detection 

of nutrient stresses (Hernández & Lopez, 2020). 

3. Accuracy and Efficiency 

3.1 Artificial Neural Networks (ANNs): ANNs have shown high accuracy 

in detecting nutrient deficiencies. For instance, an ANN model achieved an 

accuracy rate of over 97% in identifying nutrient deficiencies in ginger.            

Models such as VGG-16 and MobileNetV2 also demonstrate high accuracy rates, 

exceeding 95% for various applications (Butte et al., 2021; Jung et al., 2021). 

3.2 Receiver Operating Characteristic (ROC) Curve: The ROC curve is 

instrumental in evaluating AI model performance, with ANNs exhibiting faster and 

more accurate performance compared to other models. 
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4. Disease Detection 

4.1 AI Models for Disease Identification: Advanced AI models, including              

R-CNN, YOLOv3, Mask R-CNN, and RetinaNet, have been employed to detect 

diseases in crops such as rice. Among these, YOLOv3 has demonstrated superior 

performance with a mean average precision (mAP) of 79% (Jung et al., 2021). 

4.2 Deep Learning (DL) Models: Deep Learning models, particularly 

Convolutional Neural Networks (CNNs), are highly effective in classifying plant 

diseases such as potato blight. By analyzing extensive photographic data, these 

models differentiate between healthy and diseased plants with high accuracy 

(Afzaal et al., 2021). 

AI technology offers robust solutions for managing nutrient stress in plants, 

enhancing both nutrient detection and disease management. By leveraging advanced AI 

methodologies, agricultural practices can achieve greater precision and efficiency, 

ultimately contributing to improved crop health and yield. 

 

5.3. Irrigation Management Using AI 

Artificial Intelligence (AI) technologies play a pivotal role in enhancing irrigation 

management and addressing challenges posed by drought and hydrologic imbalances in 

agriculture. This paper discusses AI methodologies that improve drought prediction and 

irrigation management, offering innovative solutions for modern agricultural practices. 

1. Drought Prediction and Management 

1.1 AI in Drought Forecasting: AI models are instrumental in predicting 

drought conditions and assessing hydrologic imbalances that impact agricultural 

operations. The use of accurate data is imperative for the early detection of 

droughts, enabling timely and effective interventions (Mallya et al., 2013; Alizadeh 

& Nikoo, 2018). 

1.2 Machine Learning Models: Machine learning (ML) models analyze 

weather patterns to forecast drought risks. Remarkably, models such as GoogleNet 

have achieved high prediction accuracy for crops like maize, okra, and soybean     

(Chandel et al., 2020). Additionally, Deep Convolutional Neural Networks 

(DCNN) have surpassed traditional ML models in image analysis accuracy, 

enhancing prediction capabilities (Rasti et al., 2020). 

2. Advanced AI Models for Irrigation 

2.1 Thermal Imaging: AI models utilizing thermal imaging are effective 

for monitoring water stress in crops. For instance, the Inception-ResNet-v2 model 

combines deep learning with transfer learning to accurately detect thermal stress in 

crops such as sugarcane (Melo et al., 2022). This non-destructive approach 

provides critical insights into water stress levels. 

2.2 Artificial Neural Networks (ANNs): ANNs exhibit strong 

performance in identifying water stress stages across various crops. ANN models 

have achieved up to 93% accuracy in detecting water stress in lettuce farms       

(Osco et al., 2019). These models are also used to forecast soil moisture and 

evapotranspiration, utilizing minimal data inputs (Arif et al., 2012). 

https://doi.org/10.5281/zenodo.14846670


Srayut Tongnoy and Deng-Neng Chen 

 

 15 

 
 

 
Revista Espanola de Documentacion Cientifica,  
ISSN: 0210-0614; eISSN: 1988-4621 

DOI: https://doi.org/10.5281/zenodo.14846670 

ฏ 

3. Comparative Analysis and Innovations 

3.1 Hyperspectral Imaging: The use of close-range hyperspectral 

imaging, combined with AI techniques, enhances early detection of stress 

conditions in crops. AI models leveraging hyperspectral data can detect stress up 

to 10 days sooner than traditional models like the Normalized Difference 

Vegetation Index (NDVI) (Behmann et al., 2014). 

3.2 Neuro-Drip Irrigation: ANN-based neuro-drip irrigation systems 

optimize subterranean water management by employing precision farming and 

wireless sensor networks. This technology enhances water use efficiency and 

reduces costs, promoting sustainable agricultural practices (Hinnell et al., 2010). 

The integration of AI technology in irrigation management provides innovative 

solutions to mitigate drought impacts and optimize water resources. By leveraging 

advanced models, agriculture can achieve greater precision and sustainability, ultimately 

improving crop yields and resilience to environmental challenges. 

5.4 AI for Detection and Management of Weed Stress 

Weeds are a significant challenge in agriculture due to their competition with crops 

for essential nutrients and resources, which ultimately impedes crop development and 

decreases productivity (Soltani et al., 2017). Traditional weed management methods, 

primarily reliant on chemical herbicides, encounter several issues such as the emergence 

of herbicide-resistant weed species and profound environmental and health impacts 

(Amato-Lourenco et al., 2020). This paper reviews the challenges associated with chemical 

herbicides and explores the advancements in automated weed control technologies, which 

offer promising solutions to these issues. 

1. Challenges with Chemical Herbicides 

1.1 Herbicide Use: Although herbicides are considered cost-effective for 

large-scale weed control, their extensive application often results in environmental 

pollution and health risks for farmworkers (Balafoutis et al., 2017). The uniform 

application of herbicides over entire fields not only increases costs but also 

contributes to significant environmental degradation. 

1.2 Consumer Preferences: There is an increasing consumer demand for 

organic and sustainable agricultural products, which encourages the exploration of 

alternative weed management strategies (Ampatzidis et al., 2018).                             

This trend reflects a larger societal shift towards environmentally friendly and 

health-conscious food production practices. 

2. Advancements in Automated Weed Control 

2.1 Sensor-Based Solutions: Automated weeding technologies are gaining 

popularity as they utilize sensors for precise weed detection and management. 

These systems employ advanced classification criteria, such as "green on brown" 

(GoB) and "green on green" (GoG), to improve the accuracy of weed control 

(Allmendinger et al., 2022). 

- GoB employs spectral data in near-infrared and visible wavelengths to distinguish 

between green vegetation and soil. 

- GoG uses image detection algorithms to differentiate between crops and weeds, 

enhancing precision in managing weed populations. 
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2.2 Precision Application: AI-driven approaches enable targeted herbicide 

applications using geo-referenced weed maps, which significantly reduce chemical 

usage and the resultant environmental impacts (Zhang et al., 2022; Espejo-Garcia 

et al., 2020). This method allows for the specific targeting of weed-infested areas, 

minimizing unnecessary application over healthy plants. 

3. Benefits of Automated Weeding 

3.1 Efficiency and Safety: Automated weeding devices prove especially 

beneficial for large-scale farming operations where manual weeding is inefficient.               

These devices reduce chemical usage and limit physical disruption to crops, thus 

enhancing both operational efficiency and crop safety (Torres-Sánchez et al., 2013; 

Luvisi et al., 2016). 

3.2 Environmental Impact: By precisely targeting weeds, AI-based tools 

help in reducing chemical contamination of food products and surrounding 

environments. Such technologies contribute to lowering the ecological footprint of 

agricultural operations (Jha et al., 2021; Weiss et al., 2020). 

 
Table 2. Overview of commercially available Spot Spraying systems  

Company Product 
Technology and 

Model 

Detection 

Solution 
Applications 

Chemical 

Reduction 

Efficiency 

Rate 

Kilter AX-1 Kilter 

Systems 

RTK-based crop 

detection and 

selective spraying in 

vegetables 

Robot Robot unknown 

AgriCon H-Sensor AI-based weed 

detection in cereals 

and maize 

Bi-spectral 

camera 

Tractor 

mounted 

50% reduced 

Agrointelli Robotti Combining Deep 

Learning 

and BigData 

RTK-GPS, 

autonomous, 

Lidar, 

Camera 

Robot 40–60% 

reduced 

Weed-It Weed-It Detection of green 

vegetation 

Blue LED-

lighting and 

spectrometer 

Tractor 

mounted 

95% reduced 

(only in crop-

free areas) 

Ecorobotix ARA CNN-based weed 

detection in sugar 

beet and spot 

spraying 

Multi-

camera 

vision 

system 

Tractor 

mounted 

Up to 95% 

BASF, Bosch, 

Amazone 

Smart 

spraying 

Camera-based weed 

coverage 

measurement and 

spot spraying 

Bi-spectral 

camera 

Tractor 

mounted 

70% reduced 

Data Source: Allmendinger et al. (2022) 

Weeds pose significant challenges to agricultural productivity by competing for 

essential resources and nutrients. Traditional weed management practices, such as 

chemical herbicides, are increasingly problematic due to herbicide-resistant weed species 

and adverse environmental impacts (Soltani et al., 2017). Recent advances in AI and 
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automated technologies offer promising improvements in precision and efficiency for 

weed management. 

1. Advancements in Automated Sprayers 

1.1 Technological Progress: The development of automated sprayers has 

progressed significantly, integrating AI to facilitate precise patch and spot spraying 

techniques. Such advancements help to reduce herbicide dosage and enhance 

targeting accuracy, ultimately minimizing environmental impacts (Fernandez-

Quintanilla et al., 2018). 

1.2 Suitability: AI-assisted sprayers are well-suited for both large-scale 

crops such as maize, wheat, and soybeans, and high-value crops like vegetables and 

beets. These technologies boost operational efficiency and alleviate the workload 

of field operators (Villette et al., 2021; Jin et al., 2022). 

2. Historical and Recent Innovations 

2.1 Early Systems: Initial automated systems, like those by Lee et al. 

(1999), had limited functionality and required considerable time for weed detection.            

Recent technological advances have greatly enhanced these systems' capabilities 

(Balafoutis et al., 2017). 

2.2 Modern Solutions: Innovations such as the H-Sensor by Agricon 

GmbH and the "See and Spray System" by Blue River Technology have reduced 

herbicide usage and improved application precision, marking significant progress 

in automated weed control (Balafoutis et al., 2017). 

3. AI and Machine Learning Models 

3.1 Detection Accuracy: Recent studies have shown that deep learning 

models, such as Support Vector Machines (SVM), YOLOV3, and Mask R-CNN, 

exhibit high accuracy in weed detection, with YOLOV3 and Mask R-CNN 

achieving approximately 94% accuracy (Osorio et al., 2020). These models 

outperform traditional image processing methods and human analysis (Rosset & 

Gulden, 2020). 

3.2 Integration with IoT: The integration of AI with Internet of Things 

(IoT) technologies has enhanced data relay networks, allowing comprehensive field 

data collection (temperature, humidity, moisture) to inform decision-making 

processes (Shahzadi et al., 2016). 

4. Challenges and Limitations 

4.1 Data Limitations: AI models, especially in unpredictable 

environments, are challenged by the availability and quality of data. Extensive 

datasets are required for training to ensure model accuracy and adaptability (Hill et 

al., 2016; Chu et al., 2021). 

4.2 Complexity of Weed-Crop Interactions: Understanding and modeling 

the complex interactions between weeds and crops remain challenging for AI 

developers. Despite technological progress, models struggle with the diverse and 

dynamic conditions of real-world applications (Price et al., 2018; Kiala et al., 

2022). 
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5. Future Directions 

5.1 Improved Accuracy: Ongoing advancements in AI and machine 

learning, particularly in deep convolutional neural networks (DCNN) and artificial 

neural networks (ANN), promise further enhancements in weed detection and 

management capabilities (Hall et al., 2017; Chu et al., 2021). 

5.2 Increased Dataset Quality: Advancing the quality and breadth of 

datasets is essential for developing more robust AI models capable of efficient 

performance in varying field conditions (Hill et al., 2016). 

 

6. Limitations 

Despite the significant potential of artificial intelligence (AI) to revolutionize 

agricultural practices, its integration encounters numerous obstacles. These challenges 

include job displacement, inadequate data resources, infrastructure constraints, high 

implementation costs, and educational deficits. Addressing these issues is essential for the 

effective incorporation of AI into global agricultural operations. 

1. Job Displacement and Impact on Employment 

The automation potential of AI in agriculture raises concerns about job displacement. 

As AI technologies advance, they can perform labor-intensive tasks such as planting, 

harvesting, and weed control, which currently employ a substantial portion of the global 

agricultural workforce. Lowenberg-DeBoer et al. (2020) suggest that AI-driven 

automation might replace up to 20% of agricultural jobs worldwide, risking significant 

unemployment in rural regions. This shift has profound socioeconomic implications, 

particularly in developing countries where agriculture represents a primary source of 

livelihood. 

2. Data Collection and Availability 

2.1 Resource Intensive 

Robust AI systems in agriculture depend on extensive data sets, critical for 

training machine learning algorithms. Smaller or under-resourced farms often lack 

the infrastructure necessary for comprehensive data collection and management.        

The processes involved are resource-intensive and frequently exceed the technical 

capabilities of many farming operations, thus hindering AI implementation. 

Consequently, the advantages of AI tend to favor farms possessing the required 

technological resources to sustain data-driven activities. 

 

2.2 Geographical Variability 

A significant hindrance in applying AI is the geographical variability in 

agricultural practices. Farming techniques, equipment, and standards vary by 

region, which can restrict the applicability of AI algorithms trained on localized 

data sets. Variability in soil types, climate conditions, and crop varieties, even 

within the same region, complicates the adaptation of AI to specific locales. 

Lacking region-specific training data, AI models may fail to deliver accurate 

predictions, thereby limiting their practical application in diverse agricultural 

environments. 
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3. Infrastructure Challenges 

3.1 Connectivity Issues 

Rural and remote farms often struggle with limited internet connectivity, 

impeding the deployment of AI technologies that depend on cloud computing, real-

time data transmission, and remote monitoring. The absence of stable, high-speed 

internet access poses a substantial barrier to integrating AI in agriculture, inhibiting 

the widespread adoption of these technologies (Talaviya, 2020). 

4. High Costs and Accessibility 

4.1 Implementation Costs 

The initial investment required for AI solutions in agriculture is frequently 

prohibitive for small-scale or low-income farmers. These costs encompass              

AI-enabled equipment and technologies, as well as ancillary infrastructure like 

sensors and data storage systems. Consequently, AI remains accessible 

predominantly to financially capable farmers, restricting its broader dissemination. 

4.2 Technological Skills 

Beyond financial hurdles, effective AI utilization in agriculture demands a 

certain degree of technological literacy. Many farmers, particularly those with 

limited formal education, may lack the necessary skills to operate and maintain AI 

systems. This skill gap further limits their ability to capitalize on AI advancements. 

5. Educational and Training Needs 

5.1 Training Programs 

To bridge the knowledge gap and facilitate AI adoption in agriculture, 

comprehensive educational and training programs are indispensable.                       

Such initiatives would equip farmers with essential skills for utilizing AI 

effectively, covering areas like basic AI concepts, data collection, equipment 

maintenance, and troubleshooting. Enhancing technical proficiency among farmers 

could render AI adoption more inclusive and effective over time. 

 

7. AI in Sustainable Development Goals (SDGs) 

The integration of Artificial Intelligence (AI) into agricultural systems can 

significantly contribute to several Sustainable Development Goals (SDGs) outlined by the 

United Nations. These goals aim to address various global challenges, and AI offers 

potential solutions for improving productivity, sustainability, and resilience in agriculture. 

Below is a detailed examination of the SDGs that are particularly relevant to the application 

of AI in sustainable agricultural practices: 

1. SDG 2: Zero Hunger 

Objective: End hunger, achieve food security, improve nutrition, and promote 

sustainable agriculture. 

AI’s Contribution: AI enhances agricultural productivity through precision farming 

techniques that optimize crop planning, irrigation, and pest management. By analyzing 

data on crop health, weather patterns, and soil conditions, AI facilitates improved decision-

making that supports food security and agricultural sustainability. 

 

 

https://doi.org/10.5281/zenodo.14846670


Srayut Tongnoy and Deng-Neng Chen 

 

 20 

 
 

 
Revista Espanola de Documentacion Cientifica,  
ISSN: 0210-0614; eISSN: 1988-4621 

DOI: https://doi.org/10.5281/zenodo.14846670 

ฏ 

2. SDG 12: Responsible Consumption and Production 

Objective: Ensure sustainable consumption and production patterns. 

AI’s Contribution: AI aids in optimizing the use of resources such as water, fertilizers, 

and pesticides, thereby reducing waste and environmental impact. AI-driven systems 

ensure that these resources are applied efficiently, promoting sustainable agricultural 

practices and minimizing ecological footprints. 

3. SDG 13: Climate Action 

Objective: Take urgent action to combat climate change and its impacts. 

AI’s Contribution: AI technologies contribute to climate action by monitoring 

environmental conditions and predicting climate-related impacts on agriculture.                

This includes forecasting extreme weather events and enabling the adoption of climate-

resilient farming practices, thereby mitigating the adverse effects of climate change. 

4. SDG 6: Clean Water and Sanitation 

Objective: Ensure availability and sustainable management of water and sanitation 

for all. 

AI’s Contribution: AI enhances water management in agriculture by optimizing 

irrigation practices based on real-time data on soil moisture and crop needs. This efficient 

water use helps in conserving water resources and ensuring sustainable agricultural 

practices. 

5. SDG 15: Life on Land 

Objective: Protect, restore, and promote sustainable use of terrestrial ecosystems, 

manage forests sustainably, combat desertification, halt and reverse land degradation, and 

halt biodiversity loss. 

AI’s Contribution: AI supports sustainable land management by monitoring soil 

health, assessing biodiversity, and detecting land degradation. These insights facilitate 

informed decisions that protect and restore terrestrial ecosystems, contributing to the 

preservation of biodiversity and sustainable land use. 

6. SDG 8: Decent Work and Economic Growth 

Objective: Promote sustained, inclusive, and sustainable economic growth, full and 

productive employment, and decent work for all. 

AI’s Contribution: AI improves agricultural productivity and economic outcomes by 

automating tasks and enhancing efficiency. While AI may displace certain agricultural 

jobs, it also creates opportunities for new skills and roles related to AI technology, 

contributing to economic growth and the creation of decent work. 

7. SDG 9: Industry, Innovation, and Infrastructure 

Objective: Build resilient infrastructure, promote inclusive and sustainable 

industrialization, and foster innovation. 

AI’s Contribution: AI drives innovation in agricultural practices and infrastructure, 

such as smart farming technologies and automated systems. This advancement supports 

the development of resilient infrastructure and promotes sustainable industrial practices in 

agriculture. 
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8. SDG 17: Partnerships for the Goals 

Objective: Strengthen the means of implementation and revitalize the global 

partnership for sustainable development. 

AI’s Contribution: Effective implementation of AI in agriculture often requires 

collaboration among governments, private sector entities, research institutions, and 

international organizations. These partnerships are essential for driving innovation, sharing 

knowledge, and ensuring equitable access to AI technologies. 

 

Indirect Contributions: 

SDG 1: No Poverty: By increasing agricultural productivity and supporting 

smallholder farmers, AI can enhance incomes and help alleviate poverty in rural 

areas. 

SDG 3: Good Health and Well-being: AI improves food safety and reduces reliance 

on harmful chemicals, which contributes to healthier food systems and public 

health. 

 

8. Conclusions 

This study investigates the application of AI technology in the agricultural sector 

through a comprehensive review of academic research and case studies. The findings 

highlight that AI technology offers substantial benefits to farming operations, particularly 

in areas such as nutrient detection, weed management, and irrigation control.                          
These advancements contribute to enhanced precision farming practices, optimizing 

resource management, mitigating environmental risks, and increasing productivity.                
AI technologies, including machine learning and advanced sensors, play a pivotal role in 

addressing current agricultural challenges. They facilitate precise monitoring of crop 

health, efficient weed control, and accurate water stress management. Despite these 

advantages, it is essential to continue research to fully understand the potential benefits 

and limitations of AI integration in agriculture. This includes examining the broader social, 

financial, and environmental implications of AI technology. Future research should focus 

on exploring the effects of AI across different dimensions to ensure its benefits are 

maximized while addressing any potential drawbacks. By doing so, AI can further advance 

the agricultural sector, improve crop yields, and contribute to global goals of reducing 

hunger and enhancing food security. 
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